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Abstract: High-resolution image segmentation for landscape applications has garnered significant
attention, particularly in the context of ultra-high-resolution (UHR) imagery. Current segmentation
methodologies partition UHR images into standard patches for multiscale local segmentation and
hierarchical reasoning. This creates a pressing dilemma, where the trade-off between memory effi-
ciency and segmentation quality becomes increasingly evident. This paper introduces the Multilevel
Contexts Weighted Coupling Transformer (WCTNet) for UHR segmentation. This framework com-
prises the Mult-level Feature Weighting (MFW) module and Token-based Transformer (TT) designed
to weigh and couple multilevel semantic contexts. First, we analyze the multilevel semantics within
a local patch without image-level contextual reasoning. It avoids complex image-level contextual
associations and eliminates the misleading information carried. Second, MFW is developed to weigh
shallow and deep features for enhancing object-related attention at different grain sizes from mul-
tilevel semantics. Third, the TT module is introduced to couple multilevel semantic contexts and
transform them into semantic tokens using spatial attention. Then, we can capture token interac-
tions and obtain clearer local representations. The suggested contextual weighting and coupling of
single-scale patches empower WCTNet to maintain a well-balanced relationship between accuracy
and computational overhead. Experimental results show that WCTNet achieves state-of-the-art
performance on two UHR datasets of DeepGlobe and Inria Aerial.

Keywords: ultra-high-resolution image; segmentation quality; multilevel semantic contexts; transformer

1. Introduction

With the rapid progress in remote sensing technology, the acquisition of satellite
images and the surge in data availability have unveiled new opportunities for the computer
vision community. Ultra-high-resolution (UHR) imagery [1] (i.e., 2K, 4K, or even higher-
resolution images) acquired by low-orbit satellites and unmanned aerial vehicles (UAVs) [2]
has driven the development of remotely sensed imagery analysis since it allows for a more
comprehensive characterization of the ground surface compared to ordinary sensor data.
It encounters diverse imaging applications, including but not limited to high-resolution
geospatial image analysis, urban planning, and land use and land cover (LULC) [3], as well
as land resource management [1].

UHR image classification is often implemented based on semantic segmentation,
which is the process of labeling each pixel in an image as a different semantic category [4].
Compared with local tasks of structured output such as anchor-based object detection
and classification, semantic segmentation not only understands the location of each object
or scene in the image but also effectively confirms the boundaries by labeling closed
object categories pixels. However, generalized semantic segmentation models [4] that
work on full-resolution images and perform intensive prediction are not suitable for UHR
images. The escalating image resolution demands increased computational resources,
given its dependence on expansive receptive domains and intricate deep features [5,6] or
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graph modules [7–9]. This creates a challenging trade-off between memory efficiency and
segmentation quality.

As for UHR image segmentation, recent popular practices are categorized into two
types: (i)—the input is downsampled to smaller spatial dimensions before performing
segmentation; (ii)—partitioned patches are segmented individually and their results are
merged into high-resolution patches. The first scheme sacrifices segmentation quality to
improve model efficiency. UHR images encompass numerous objects/regions characterized
by substantial variations in scale and shape. The segmentation model must not only
grasp the semantics of extensive image regions but also discern image details across
diverse granularities.Therefore, examples of the the second scheme are widely respected,
such as GLNet [10] and FCtL [11]. They conducted multiple predictions on the patches,
which constrained the overall inference speed. To improve it, ISDNet [12] abandons
deep branching inference in favor of direct downsampling while WSDNet [13] naturally
integrates the multilevel discrete wavelet transform (DWT) and inverse discrete wavelet
transform (IWT). However, such approaches do not inherently improve the pressure of
inference and training due to hierarchical inference.

To alleviate this issue, this paper proposes the Multilevel Contexts Weighted Coupling
Transformer (WCTNet), which effectively merges the localized results delineated by the
hierarchical inference into high-resolution semantic masks. Contextual information is an
effective guidance in analyzing semantic regions with large-size contrast [10], which are
used to construct multiscale context regions for association and hierarchical reasoning in
many approaches [10–14]. Considering the different scales of contexts in local patches are
the multilevel semantics, we propose to analyze multilevel features within local patches.
First, we introduce the Multilevel Feature Weighting (MFW) module to deal with the multi-
level semantic contexts. MFW analyzes the relationship between shallow and deep features
by weighting the features that highlight the attention regions related to objects at different
grain sizes. With previous knowledge, shallow texture features have a prominent contri-
bution to distinguishing boundaries. Additionally, the processing of single-scale patches
eliminates misleading information from multiscale contexts while avoiding the complex
process of context–region correlation. Second, we introduce a Token-based Transformer
(TT) to couple multilevel semantic contexts. Adding or concatenating semantics cannot
accurately capture the correlation between multilevel contexts due to the redundancy
associated with high-level features. TT uses spatial attention to transform the contextual
semantics into a set of semantic tokens. These tokens are then provided to the self-attention
module of the transformer [15] to capture token interactions. The generated visual tokens
produce clearer local representations to avoid the distraction of redundant information.
The contextual weighting and coupling of single-scale patches, facilitated by deep shar-
ing interactions, empower WCTNet to effectively strike a balance between accuracy and
computational overhead.

The contributions of this paper can be summarized as follows:

• This paper proposes a novel local patch segmentation network WCTNet. The proposed
model avoids the complex process of context region association while eliminating the
misleading information brought by multiscale contexts.

• MFW is proposed for weighting multilevel semantic contexts. Relationships between
shallow and deep features are captured to highlight object-related regions of attention
at different grain sizes. Further, TT module is introduced to couple multilevel semantic
contexts. Spatial attention is applied to transform multilevel contexts into compact
semantic tokens and self-attention is used to capture the correlations between tokens.

• Experimental results demonstrate the superiority of WCTNet, which achieves state-of-the-
art performance on two UHR datasets, including DeepGlobe [16] and Inria Aerial [17].
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2. Related Work
2.1. Semantic Segmentation

The rapid development of deep learning [18–22] has significantly improved semantic
segmentation, which requires fine-grained labeling of the image at the pixel level. Fully
convolutional networks (FCN) [4] were the first CNN model to be used for semantic segmen-
tation. Most of the subsequent generalized models are based on FCN to make improvements.
U-Net [23] enriched the response features by the cross-layer fusion of multilevel features and
jump connections. Similar to U-Net, Vijay et al. constructed codec networks to map low-level
coded features to full input features to achieve pixel-by-pixel classification [24,25]. However,
these models have very high GPU memory requirements for UHR images. They rely on large
receiver domains and fine-grained deep features [5] or graph modules [7].

Researchers further balanced computational cost and performance [26–30]. ENet [26]
and ICNet [28] reduced GPU memory through model compression. However, they are
not effective on UHR images that contain much complex detail, since model compression
does not maintain the complex feature representation of the original model. BiseNetV2 [29]
designed bilateral aggregation and enhanced training strategies to improve performance.
However, the feature representation is sacrificed by relying on small receiver domains and
feature channel cuts. Additionally, knowledge distillation had been used to balance the
accuracy and speed of segmentation models [31]. And then, the scheme of merging local
patches gradually became popular for UHR images. GLNet [10] constructed dual branches
to aggregate global and local information to improve the correlation. CPNet [32] designed
a contextual prior layer to model intra- and interclass correlations. FCtL [11] proposed
a location-aware context fusion to capture the location correlation of local patches and
contexts. ISDNet [12] constructed bilateral models to feed shallow and deep branches with
different sizes of inputs. WSDNet [13] applied natural integration of multilevel discrete
wavelet transforms to release the computational burden.

2.2. The Fusion of Contextual Information

Contextual information includes image-level and semantic-level context. The context
in visual tasks plays a key role in encoding local spatial neighborhoods or even nonlocal
information [10,33,34]. Segmentation can be refined by integrating high-level and low-level
features to capture semantic context at different grain sizes [35–38]. RefineNet [39] used
multipath refinement blocks to fuse multiscale semantic contexts. The Laplace pyramid
was used to refine boundaries reconstructed from low-resolution graphs [40]. The Feature
Pyramid Network (FPN) [41] aggregated multilevel features after upsampling in a top-
down manner. ParseNet [42] used global pooling to aggregate different levels of context
for scene parsing. DeepLab [33] used dilated convolution and atrous spatial pyramids
to expand the sense field. Multilevel context information has been used to aggregate
global context and high-resolution details [39–41]. Image-level semantics were proposed
to enhance the relevance of local and global semantics. GLNet [10] fused global and local
contexts to enhance aggregation. CPNet [32] embedded a priori into the network to model
intra- and inter-class dependencies. FCtL [11] proposed a location-aware context fusion
to capture the positional relevance of local patches and contexts. ISNet [12] integrated
image-level and semantic-level contexts to improve pixel representation.

Unlike previous work, we fuse contextual information in two ways. We consider
semantic contexts since image-level contexts carry more redundant information compared
to semantic contexts. The semantic context on localized patches can effectively balance
accuracy and complexity. A dilemma arises between the complex feature processing used
for aggregate image-level context and the slight performance gain. First, MFW is used
to weigh shallow and deep features to highlight the attention of the region associated
with objects in the image at different grain sizes, which can enhance training efficiency.
Second, the self-attention mechanism in the transformer can capture the dependencies
between different positions in a sequence, especially for long sequences. Therefore, this
mechanism can be used to deal with UHR images to capture the correlation between feature
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sequences without introducing image-level context. The performance can be improved
while mitigating redundant feature processing during local patch aggregation.

3. Materials and Methods
3.1. Datasets

DeepGlobe [16]: This dataset contains 803 UHR images (2448 × 2448 pixels). The im-
ages are randomly divided into training, validation, and test sets in a 8:1:1 ratio. The dense
annotation contains seven types of landscape regions: cyan for “city”; yellow for “agricul-
ture”; purple for “rangeland”; green for “forest”; blue for “water”; white for “barren”; and
one of the seven categories not considered in the challenge, called the “unknown” region.

Inria Aerial [17]: This dataset covers a diverse range of urban landscapes, from dense
metropolitan areas to high mountains. It contains 180 UHR images (from five cities) with
5000 × 5000 pixels. We randomly divided the images into training, validation, and test
sets in a ratio of 8:1:1, respectively. Each image is annotated using a binary mask for
constructed/nonconstructed regions.

3.2. Pipeline

The main concept of this paper follows the design of merging the segmentation of local
patches into panoramic high-resolution results, as shown in Figure 1, given an ultra-high-
resolution image I with width W and height H. We uniformly divide it into N localized
patches Ik(k = [1, ..., N], Ik ∈ I) with width w and height h(w < W, h < H) along the
row and column axes. Next, the proposed WCTNet performs the segmentation of each
localized patch. Then, we merge the localized results into one segment as the final high-
resolution segmentation mask. WCTNet contains two modules i.e., MFW and TT, whose
core idea is to utilize multilevel semantic context to analyze regions of high-size contrast
within local patches. In particular, we only analyze multilevel features within a local
patch region. The processing of single-scale patches eliminates misleading information
from multiscale contexts while avoiding the complex process of context–area correlation.
Figure 2 illustrates the framework of WCTNet. First, local patches of width w and height h
are fed into the backbone network for feature extraction. The local patches are encoded
as four-level multiscale semantic contexts f1, f2, f3, f4. Second, MFW weights and fuses
multilevel semantic contexts to capture the relationship between shallow features and
deep features. Third, we introduce TT to couple the output of MFW considering that the
transformer can effectively capture the dependencies between different positions in the
sequence. Correlations between multilevel contexts are further captured. The generated
visual tokens produce clearer local representations to avoid the interference of redundant
information. Finally, the enhanced semantic contexts are fused and up-sampled to obtain
local segmentation masks. Next, we present the details of MFW and TT, respectively.

Set of local patches

WCTNet

inferencing The Segmentation of 

local patches

aggregationcrop

... ...

Set of local patches

WCTNet

inferencing The Segmentation of 

local patches

aggregationcrop

... ...

Figure 1. The main process of UHR image segmentation, which includes local block collection
cropped from the image; Local patch inference based on WCTNet; And combination of the local
segmentation results into a high-resolution mask.
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Figure 2. The pipeline of the WCTNet: MFW weights and fuses four levels of multiscale semantic
contexts extracted by the backbone network. TT couples the output of MFW for semantic context
enhancement. The enhanced semantic context is fused and upsampled in the response layer to obtain
the local segmentation mask.

3.3. MFW Module

Image-level contexts at different scales within a localized patch are essentially mul-
tilevel semantics. The integration of multilevel semantic contexts aims to amalgamate
features at various resolutions, imparting unequal contributions to the response output.
Proper feature fusion can improve the efficiency of the model. MFW incorporates an extra
weight for the semantic context, enabling the network to discern and learn the significance
of each input. Figure 3 shows the structure of MFW, which weights multilevel seman-
tic context f1, f2, f3, f4 and generates I1, I2, I3, I4. The weights consists of three 2D sets,
(w1, w2, w3); and three 3D sets, (w4, w5, w6), normalized by:

1

∑
d=0

(wi
d) + ε = 1, (1)

and
2

∑
d=0

(wj
d) + ε = 1, (2)

where wi
d represents the i-th 2D weight, i = 1, 2, 3. wj

d represents the j-th 3D weight,
j = 4, 5, 6. ε = 0.0001 is a small value to avoid numerical instability. We provide a concrete
example to illustrate the procedure of weighted features. Here, we elucidate the generation
process of the feature I1 when weighted by other features f1, f2, f3, f4 in Figure 3:

F0 = conv(swish(Upsample(H2)w∗0
0 + I0w∗0

1 + Upsample(I1)w∗0
2)), (3)

where
H2 = conv(swish(I1w2

0 + Upsample(H1)w2
1)), (4)

where conv(·) represents a convolutional op with conv1×1(·) and conv3×3(·) for feature
processing, and convn×n(·) is a depth separable convolutional op with a convolution kernel
size of n× n. Upsample(·) is an upsampling op for resolution matching; swish(·) is the
activation function. Then, the weighted semantic contexts I1, I2, I3, I4 are fed into TT for
relevance enhancement.
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I3I3
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Figure 3. The pipeline of the MFW. Multilevel semantic contexts f1, f2, f3, f4 are weighted to generate
H1, H2. Six sets of feature maps are weighted to generate I1, I2, I3, I4. The weights consist of three 2D
sets (w1, w2, w3) and three 3D weight sets (w4, w5, w6), respectively.

3.4. TT Module

We introduce TT to couple multilevel semantic contexts. A transformer [15] was
proposed to capture dependencies between different positions in a sequence. To reduce
computation complexity, we directly model in the semantic context instead of directly apply-
ing the transformer to the pixel sequences of image patches [43]. Additionally, running in a
semantic markup space enables contextually informed attention to rich image information.

First, to capture the relevance of multilevel features using self-attention, we adopt a
filter-based tokenizer [44] to transform the semantic context into a compact set of semantic
tokens. The filter-based tokenizer restructures the visual features using convolutional
feature embedding. Additionally, point-wise convolution is employed to map multilevel
visual features to independent semantic tokens. This operation avoids introducing addi-
tional computational costs in the embedding phase by reducing the number of parameters
of the model. Formally, let X ∈ RHinWin×C (height Hin, width Win, channels C) denote the
input feature from multilevel semantics. We map each feature point Xp ∈ RC to one of L
semantic groups using point-wise convolutions. In each group, the visual tokens T ∈ RL×C

can be obtained by spatially pooling as:

T = So f tMaxHinWin(XWg)
T(XWc), (5)

where Wg ∈ RC×L forms semantic groups from X, So f tMaxHinWin(·) translates X acti-
vated by Wg into spatial attention, and Wc represents a point-wise convolution for the
input feature.

Second, visual markers are inputted into the self-attentive module of the transformer to
capture token interactions. This involves utilizing input-dependent weights by designing
and supporting visual tokens with variable meanings, encompassing a broader range
of possible concepts with fewer tokens. We use the core concept of the self-attention
mechanism to capture visual tokens dependencies i.e., by learning the relationships between
queries, keys, and values and assigning weights based on the similarity of the query
to the keys. This mechanism endows the model with the ability to allocate attention
between different locations, enabling the model to effectively capture long dependencies
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and important information in the input tokens. We employ two repeated transformer
encoders to effectively model interactions among these visual tokens by:

Tout = LayerNorm(T′out + W1(σ(W2T′out))), (6)

and
T′out = LayerNorm(T + So f tMaxL((Tke)(Tqe)

T)(Tve)), (7)

where Tout, T′out ∈ RL×C are the visual tokens, W1, W2 are point-wise convolutions, and
σ(·) is an activation function ReLU(·). So f tMaxL(·) translates these activations into a
token of attention. LayerNorm(·) represents the layer normalization. Self-attention is
computed by a compatibility function of the qe with the corresponding ke as a weighted
average of ve, in which qe, ke, ve are learnable weights queries, keys, and values, respectively.
The generated visual tokens Tout produce clearer localized representations to avoid the
interference of redundant information.

Third, we fuse the output of two repeat transformers with the semantic context to
refine the pixel-array representation and supplement pixel-level information, given by:

Xout = X + So f tMaxL((XWq)(TWk
T))(TWv), (8)

where Xout ∈ RHinWin×C is the output semantic. Wq, Wk, Wv are learnable weights used
to compute queries, keys, and values. We then obtain the augmented semantic context
{I′1, I′2, I′3, I′4} from Xout.

3.5. Response Layer

The enhanced semantic context {I′1, I′2, I′3, I′4} is fed into the response layer to generate
soft output. First, {I′2, I′3, I′4} are upsampled to the resolution of {I′1} and concatenate
together, as:

Iout = I′1
⊕

Upsample(I′2)
⊕

Upsample(I′3)
⊕

Upsample(I′4), (9)

where Iout is the output semantics and
⊕

represents the concatenation.
Second, the output semantics Iout generates soft output Sout in the segmentation

header as:
Sout = Upsample(conv1×1(σ(BN(conv3×3(Iout))))), (10)

where the soft output Sout ∈ Rhw×class (the number of category class). σ represents the
activation function ReLU and the BN is the batch normalization.

3.6. Implementation Details

The implemented WCTNet utilizes PyTorch 2.0.1. All experiments are conducted
on a high-performance server equipped with 2 RTX-3060 GPUs. The model undergoes
training on 2 GPUs and evaluation on 1 GPU. ResNet50 [45] was introduced as a backbone
for multilevel feature extraction. The initial learning rate is set to 5× 10−5 and decayed

by a multilearning rate strategy, i.e., multiplied by (1− iter
total iter )

0.9
after each iteration.

During the training process, we first pre-train 50 epochs in DeepGlobe to warm up WCTNet,
and then 50 epochs of fine-tuning on Inria Aerial and DeepGlobe in turn. In the inference
process, we follow the benchmark algorithm FCtL [11] using the test time augmentation
(TTA) technique with rotation and flipping.

Evaluation Metrics: Cross-union (mIoU), frames per second (FPS), memory (Mem),
and model complexity (FLOPs) are used to investigate validity and inference speed.

4. Results
4.1. Comparison with the States of the Art

We compare the differences in UHR segmentation between the proposed WCTNet
and the state-of-the-art methods on the DeepGlobe and Inria Aerial datasets. The models
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listed are the most popular and representative ones in recent times, which referenced in
WSDNet [13]. The inference paradigm follows local inference with merging, i.e., merging
inference results from multiple temporally localized patches.

DeepGlobe Table 1 lists the quantitative results on the DeepGlobe dataset. We can see
that WCTNet strikes a good balance between mIoU, model complexity, memory, and FPS,
as compared to generic and UHR models. Specifically, the overall inference speed of
GLNet [10] and FCtL [11] is very low due to multiscale patch inference. As compared
to ISDNet [12], WCTNet removes the heavy RAF module, and thus has faster inference
speed, from 27.7 to 35.2. Compared to the state-of-the-art WSDNet [13], WCTNet performs
better in terms of both mIoU and inference speed. Also note that our method is more than
270 times faster than FCtL [11]. Moreover, we show the qualitative comparison results in
Figure 4. It can be observed that our model is able to identify striped areas (e.g., rivers) and
large areas (e.g., agriculture) due to the correlation between local contexts and contexts.
Superior to previous models, it is clear that our results are more detailed and closer to the
ground truth for both large and small regions.

Table 1. Comparison with states of the art on DeepGlobe test set.

Model Mem (M) FPS mIoU

U-Net [23] 5507 3.54 38.4

FCN [4] 5227 7.91 68.8

ICNet [28] 2557 5.3 40.2

DeepLab [33] 3199 4.44 63.5

BiseNet [29] 1801 14.2 53.0

GLNet [10] 1865 0.17 71.6

FCtL [11] 3167 0.13 72.8

ISDNet [12] 1948 27.7 73.3

WSDNet [13] 1876 30.3 74.1

Ours 1314 35.2 75.2

      (a)                                (b)                                (c)                            

Figure 4. The visualization of the WCTNet outputs in DeepGlobe. From left to right: (a) input,
(b) ground truth, (c) segmentation of WCTNet. Blue boxes indicate some distinct areas of fine-grained
segmentation. This shows that WCTNet is able to effectively capture the fine-grained regions without
being affected by feature downsampling.

Inria Aerial: This has an image pixel size of 5000 × 5000 as the UHR dataset. It
annotates only one class of buildings. As shown in Table 2, compared to each of the
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baselines, WCTNet achieves a better balance on all metrics. In particular, WCTNet achieves
an mIoU of 78.9% and an FPS of 11.2, outperforming the state-of-the-art methods [10–13].
Moreover, WCTNet is simple to train and occupies only 1354 M with a local patch size
of 512 and a batch size of 1. The results of the qualitative comparison are presented in
Figure 5. We can see that WCTNet highlights regions of attention in an image with different
granularities and generates clearer local representations. It can produce clear segmentation
while reducing training and reasoning stress.

Table 2. Comparison with states of the art on Inria Aerial test set.

Model Mem (M) FPS mIoU

FCN [4] 2447 1.90 38.4

DeepLab [33] 5122 1.67 55.9

GLNet [10] 2663 0.05 71.2

FCtL [11] 4332 0.04 73.7

ISDNet [12] 4680 6.90 74.2

WSDNet [13] 4379 7.80 75.2

Ours 1354 11.20 78.9

      (a)                              (b)                              (c)                            

Figure 5. The visualization of the WCTNet outputs in Inria Aerial. From left to right: (a) input,
(b) ground truth, (c) segmentation of WCTNet. As shown in the blue box, the proposed WCTNet is
able to maintain the accurate segmentation of the fine-grained edge, thus ensuring the integrity of
the merged results.

4.2. Ablation Study

This section examines the proposed MFW and TT modules and settings and demon-
strates their effectiveness. In all ablation studies, we experiment on the DeepGlobe test set
and all models are trained without any external dataset.

The effectiveness of MFW: To evaluate the performance of the proposed MFW, we
compare the MFW with two feature networks, namely “FPN” and “PAN”. “FPN” stands
for feature pyramid network [41] and “PAN” stands for feature network using “2FPEMs +
FFM” [46]. Table 3 shows the evaluated values of metrics for different feature networks.
We can see that “PAN” outperforms “FPN” in terms of mIoU values with less memory
usage and FLOPs. In addition, MFW improves the mIoU by 3.9% and 2.7% over “FPN”
and “PAN”, respectively, and achieves a faster inference speed of 35.2 FPS. The qualitative
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results are shown in Figure 6. Compared with “FPN” and “PAN”, background noise can be
handled more effectively with MFW.

Table 3. The ablation experiment of feature networks.

Feature Network
Param (M) FLOPs (G) Mem (M) FPS mIoU

FPN PAN MFW

X 37.87 50.23 1484 19.0 71.3

X 28.53 48.77 1422 27.8 72.5

X 25.12 40.86 1314 35.2 75.2

      (a)                               (b)                                 (c)                                 (d)                                (e)      (a)                               (b)                                 (c)                                 (d)                                (e)

Figure 6. Qualitative results by feature networks. From left to right: (a) input, (b) ground truth, (c) vi-
sualization results of ‘FPN’ inferencing, (d) visualization results of ‘PAN’ inferencing, (e) visualization
results of MFW inferencing. The red boxes mark where the segmentation maps change significantly.
This finding is that the proposed MFW efficiently segments large regions while maintaining the
capture and correction of fine-grained regional information.

The effectiveness of TT: Further, we design two sets of experiments to verify the
effectiveness of TT module. First, as shown in Table 4, the model with TT achieves 75.2%
mIoU performance gain and only 44 M memory increment over the model without TT, while
the computational cost only increases 0.82 FLOPs. Second, the impact of the transformer in
TT with different numbers of layers is given in Table 5. It is found that modeling two layers
of the transformer can bring 3.1% performance gain to the model without extra training
cost. Figure 7 shows the visualization results of segmentation. We observe that the model
with TT can better focus on rich image information from the context as compared to that
without the TT module. Moreover, our method can effectively capture fine-grained image
details, as shown in the red dashed box in Figure 7.

Table 4. Ablation results of TT.

TT Param (M) FLOPs (G) Mem (M) FPS mIoU

24.82 40.04 1270 36.7 72.1

X 25.12 40.86 1314 35.2 75.2
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Table 5. Ablation results of the transformer layers in TT. “Num of layers” represents the number of
the transformer layers.

TT
Param (M) FLOPs (G) Mem (M) FPS mIoU

Num of Layers

0 24.82 40.04 1270 36.7 72.1

1 25.01 40.35 1292 35.9 74.5

2 25.12 40.86 1314 35.2 75.2

3 25.23 41.38 1336 34.2 75.3

      (a)                             (b)                                 (c)                                 (d)                          

Figure 7. Qualitative results by the proposed TT module. From left to right: (a) input, (b) ground
truth, (c) visualization results without inferencing of TT, (d) visualization results with inferencing
of TT. As shown in the red box, the proposed TT allows the coherence of large region segmentation
while maintaining the capture of fine-grained region information.

5. Discussion

UHR image segmentation has attracted a great deal of attention due to its various
imaging applications. UHR image classification is usually based on semantic segmen-
tation, which is the process of labeling each pixel in an image into a different semantic
category. Semantic segmentation understands the position of each object or scene in an
image while effectively recognizing the boundaries by labeling closed-object-class pixels.
However, current approaches segment UHR images into standard blocks for multiscale
local segmentation and hierarchical inference. This creates an imbalance in the trade-off
between memory efficiency and segmentation quality. To solve this dilemma, the WCTNet
proposed in this paper considers semantic context to reason about the localization results
and merge them into high-resolution semantic masks, since image-level context suffers
from redundant information. The semantic context on the localized patch can effectively
balance the accuracy and complexity, where both the local and global features are exploited
while avoiding additional pixel processing.

The proposed MFW weights shallow and deep features to highlight the attention of
regions associated with objects of different granularity in the image. As shown in Figure 6,
compared to popular feature networks, MFW can handle background noise efficiently. It can
maintain the segmentation information of both large and fine-grained regions. Moreover,
considering that the self-attention mechanism captures the dependencies between different
positions in the sequence, we propose a TT module to capture the correlations between
feature sequences without image-level context. Ablation experiments show that models
with TT can better focus on rich image information from the context compared to models
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without the TT (as shown in Table 4). In addition, the proposed TT allows for consistency of
large region segmentation while maintaining the capture of fine-grained region information
(as shown in Figure 7).

As compared with the state of the art, WCTNet effectively balances mIoU, model
complexity, memory, and FPS. Qualitative comparison results (Figures 4 and 5) indicate
that our model is able to recognize detailed geographic large and small regions, since the
correlations between local and global environments can be captured. In addition, WCTNet
highlights regions of interest in the image at different granularities and generates clearer
local representations without additional training overhead.

6. Conclusions

To alleviate the stress on reasoning computation and training due to hierarchical
reasoning, this paper proposes WCTNet for UHR segmentation, where the core pipeline is
to reconstruct the global by merging the segmentation of local patches. In WCTNet, the
MFW module is proposed to weigh shallow and deep features. In this way, attention to
objects of different grain sizes is enhanced by multilevel semantics. It also avoids complex
image-level contexts and eliminates the misleading information carried by multiscale con-
texts for processing single-scale patches. Moreover, we introduce TT to couple multilevel
semantic contexts and turn them into semantic tokens via spatial attention. Token interac-
tion information captured can produce clear local representations and avoid redundant
interference information. The contextual weighting and coupling of single-scale patches en-
able WCTNet to strike a balance between accuracy and computational overhead. Rigorous
experiments demonstrate that WCTNet achieves competitive mIoU performance compared
to state-of-the-art methods while maintaining a high inference speed.
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